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Introduction

We propose a hierarchical, neural network (NN) method to stabilize hybrid systems via control Lyapunov functions (CLF).
Features: (1) novel theoretical stability guarantees for hybrid systems (2) strong results in simulations (car tracking control,
pogobot navigation and bipedal walker locomotion), with the highest stability/success rate over other baselines such as
model-base and model-free reinforcement learning (RL), model predictive control (MPC) and linear quadratic regulator
(LQR), less training samples needed compared to RL, and with the computation speed 8-50X faster than MPC.
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Methodology

Hybrid system: (% = fi(x,u), x € C; (flow set) Control: For each (sampled) system mode,

4
— hl-j (x,u), x €D;; (jump set) learn a NN CLF and a NN controller. ‘\\
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CLF stability: a system under a mode (set point x™) is stable if: cLF = RE€ YV (xe) At

3V,s.t.V(x*) =0,V(x) >0and V(x) < —aV,Vx # x*.

\ L,j

0

RoA: Compute RoA under modes and use

, .. o NN to predict RoA given the mode.
Theorem (hybrid system stability): Assume for each (visited)

mode, 3 ¢;,s.t. {x|V;(x) < c;} can under-approximate the RoA:
S; ={x|x(0) = x, |x; — x;| < €}, where X; is exiting mode i. The
hybrid system is e-stable if each mode is CLF-stable, and Vi — j: Planning: Optimize the mode x; to ensure

Vi(x;) <c;andV ( ) < %cj K ; the entering states are in the ROA.
j

where x;(x;) are the entering states for the mode i (j), K;; is the Lpian = RELU(Vi (x;) — R(xf)) +
Lipschitz constant for h;; and a; ‘ ( ) < ,8]‘ ReLU(Vj(hij(x{‘,u)) — pR(x;‘) + o)

Experimental results
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Car tracking control Pogobot navigation Bipedal locomotion : °
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Reward learning: Compared to RL under the same sample : PPO MPC Otire
size, we achieve the highest rewards. This is because RL . Pogobot navigation visualization: We control a pogobot
directly interacts with the hybrid systems, while we learn to (Spring-loaded Inverted Pendulum model) to jump
control the system under each mode, which is easier. : through 2D mazes with reference apex states. Our
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ys| o EZ * to jump to the left afterwards and MPC causes collisions.
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Car tracking control results: We control a car on roads with :

varied frictions. Our approach learns to first turn left and ;| Seerereaeesamsd K. 4 I et
then decelerate to gain more traction for the next icy road PPO QP Ours
S0 segment, whereas other methods fail to keep Bipedal locomotion success rate heatmap: We control
the car on the road. Our computation speedis : the bipedal robot to reach a target gait (motion pattern).
8X faster than the MPC method and close to Compared to RL and quadratic program (QP), we obtain a

other learning-based methods. higher success rate over different initial/goal gaits set up.





