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Introduction
We propose a hierarchical, neural network (NN) method to stabilize hybrid systems via control Lyapunov functions (CLF). 
Features: (1) novel theoretical stability guarantees for hybrid systems (2) strong results in simulations (car tracking control, 
pogobot navigation and bipedal walker locomotion), with the highest stability/success rate over other baselines such as 
model-base and model-free reinforcement learning (RL), model predictive control (MPC) and linear quadratic regulator 
(LQR), less training samples needed compared to RL, and with the computation speed 8-50X faster than MPC.
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Methodology

RoA: Compute RoA under modes and use 
NN to predict RoA given the mode.
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Planning: Optimize the mode 𝑥'∗ to ensure 
the entering states are in the RoA.

Hybrid system: 

CLF stability: a system under a mode (set point 𝑥∗) is stable if:
∃	𝑉, s. t. 𝑉 𝑥∗ = 0, 𝑉 𝑥 > 0 a𝑛𝑑	 𝑉̇ 𝑥 < −𝛼𝑉, ∀𝑥 ≠ 𝑥∗.

Theorem (hybrid system stability): Assume for each (visited)
mode, ∃	𝑐'  , s. t. 𝑥|𝑉' 𝑥 < 𝑐'  can under-approximate the RoA: 
𝑆' 	={ |𝑥 𝑥 0 = 𝑥, ;𝑥' − 𝑥'∗ ≤ 𝜀	}, where ;𝑥'  is exiting mode 𝑖. The
hybrid system is 𝜀-stable if each mode is CLF-stable, and ∀𝑖 → 𝑗:

𝑉'(𝑥') < 𝑐'  and 𝑉* 𝑥* <
+#
,#
𝑐* − 𝛼*𝐾'*𝜀

where 𝑥'(𝑥*) are the entering states for the mode 𝑖	(𝑗), 𝐾'*  is the 
Lipschitz constant for ℎ'*  and 𝛼* 𝑥* − 𝑥*∗ < 𝑉* 𝑥* < 𝛽* 𝑥* − 𝑥*∗ .

Theory

G
𝑥̇ = 𝑓' 𝑥, 𝑢 , 	 𝑥 ∈ 𝐶' 	 (flow set) 
𝑥- = ℎ'* 𝑥, 𝑢 , 	𝑥 ∈ 𝐷',* 	 (jump set)

Control: For each (sampled) system mode, 
learn a NN CLF and a NN controller.

ℒ./0 = ReLU 𝛾𝑉(𝑥1) +
𝑉 𝑥1-2 − 𝑉(𝑥1)
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ℒ3456 = ReLU 𝑉' 𝑥' − 𝑅 𝑥'∗ +
	 ReLU 𝑉* ℎ'*(𝑥'∗, 𝑢) − 𝜌𝑅 𝑥*∗ + 𝜎

Reward learning: Compared to RL under the same sample 
size, we achieve the highest rewards. This is because RL 
directly interacts with the hybrid systems, while we learn to 
control the system under each mode, which is easier.

Car tracking control Pogobot navigation Bipedal locomotion

Car tracking control results: We control a car on roads with 
varied frictions. Our approach learns to first turn left and
then decelerate to gain more traction for the next icy road

Car trajectory visualization Computation time

segment, whereas other methods fail to keep 
the car on the road. Our computation speed is
8X faster than the MPC method and close to
other learning-based methods.
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Pogobot navigation visualization: We control a pogobot
(Spring-loaded Inverted Pendulum model) to jump 
through 2D mazes with reference apex states. Our 
approach can safely finish the task, whereas PPO starts 
to jump to the left afterwards and MPC causes collisions.

Bipedal locomotion success rate heatmap: We control 
the bipedal robot to reach a target gait (motion pattern).
Compared to RL and quadratic program (QP), we obtain a
higher success rate over different initial/goal gaits set up.
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